Commonality Specifications, Merged Models, and Partial Morphisms

Harald König, FHDW Hannover

December 6, 2018

Dagstuhl Seminar
Notation and Prerequisites

- Let M be a (e.g. class or data) model. A is a snapshot of data typed over M, i.e. an assignment $\tau : A \rightarrow M$.
- For each M let’s denote with \mathcal{M} the model space of these snapshots.
- Given a collection of (locally) consistent data snapshots A_1, \ldots, A_n from different models spaces $\mathcal{M}_1, \ldots, \mathcal{M}_n$ and ...
- ...inter-model constraints that spread over some of the M_i
- Goal: Formally / virtually understand the n related spaces as one comprehensive collage ...
- ...to apply known methods for consistency checking and restoration.
- Assumption: All artefacts are basically graph-based.
Intermodel Constraint: If there is already a bed assigned to the patient, then there should be an appointment scheduled whenever there is a severe cholesterol test.
Data Commonalities

We can not check consistency, if we don’t know whether patient Mary in A_1 (typed over M_1) is the same as Marie in A_2 (typed over M_2):

<table>
<thead>
<tr>
<th>Samenesses:</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>Mary</td>
<td>John</td>
<td>Bob</td>
</tr>
<tr>
<td>A_2</td>
<td>Marie</td>
<td>John</td>
<td>NULL</td>
</tr>
<tr>
<td>A_3</td>
<td>NULL</td>
<td>John</td>
<td>Bob</td>
</tr>
</tbody>
</table>

Coded as ternary span requires the use of *partial* mappings:

![Diagram of partial mappings]
Partial Morphisms are Spans of Total Morphisms

\[A_0 \]

\[A = \quad \text{dom}(a_1) \ldots \text{dom}(a_n) \]

\[a_1 \quad \ldots \quad a_n \]

\[A_1 \quad \ldots \quad A_n \]

\[M_0 \]

\[M = \quad \text{dom}(m_1) \ldots \text{dom}(m_n) \]

\[m_1 \quad \ldots \quad m_n \]

\[M_1 \quad \ldots \quad M_n \]
Let \(\text{merge} \) be the operation that takes a (graph) diagram and computes its colimit w.r.t. to total morphisms.

\[
\begin{array}{ccc}
\mathcal{A} & \longrightarrow & \text{merge}(\mathcal{A}) \\
\downarrow \tau & & \downarrow \tau \\
\mathcal{M} & \longrightarrow & \text{merge}(\mathcal{M})
\end{array}
\]

Multi-Model: Given data \(\mathcal{A} \) and inter-model-constraints \(C \) on \(\mathcal{M} \).

\[
\mathcal{A} \models C?
\]

Reduced to: Given data \(\mathcal{A}^+ := \text{merge}(\mathcal{A}) \) and inter-model-constraints \(C \) imposed on \(\mathcal{M}^+ := \text{merge}(\mathcal{M}) \).

\[
\mathcal{A}^+ \models C?
\]

see P. Stünkel et al: *Multimodel Correspondence through Inter-Model Constraints* @ BX’18
Update Propagation and Consistency Restoration

Colimit F of \mathcal{M} (the federated system):

Inter-Model Constraint is imposed on F (yielding F'). Local update $A_i \rightarrow A'_i$ is put into data typed over F' and then projected back (get) to A_j ($j \neq i$) and possibly to A_i (amendments!), yielding a ternary delta-lens, which can be ”implemented” as a ternary span of asymmetric delta-lenses.