Semantics in RDF and SPARQL
Some Considerations

Dept. Computer Science, Universidad de Chile
Center for Semantic Web Research
http://ciws.cl

Dagstuhl, June 2017
I. URI (today IRI)
Distributed creation and management of resources and vocabulary.
I. URI (today IRI)
Distributed creation and management of resources and vocabulary.

II. Graph Structure
Distributed population and linking of distributed data
Semantics of RDF: Summary

I. URI (today IRI)
Distributed creation and management of resources and vocabulary.

II. Graph Structure
Distributed population and linking of distributed data

III. Complex dealing with incomplete information
Plus inconsistencies with SPARQL
Semantics of RDF: Summary

I. URI (today IRI)
Distributed creation and management of resources and vocabulary.

II. Graph Structure
Distributed population and linking of distributed data

III. Complex dealing with incomplete information
Plus inconsistencies with SPARQL

IV. Complex Logic
Even for RDFS
The relational core of SPARQL

SPARQL 1.1
SELECT, FILTER, AND, UNION, and EXCEPT

Multiset Relational Algebra (MRA)
π, σ, \bowtie, \cup and \setminus

Multiset nr-Datalog

SQL
SELECT, WHERE, NATURAL JOIN, UNION ALL, and EXCEPT
The relational core of SPARQL

Equivalences (hold even under multiset semantics)

<table>
<thead>
<tr>
<th>SPARQL</th>
<th>Multiset Rel. Algebra</th>
<th>nr-Datalog⁻</th>
<th>SQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECT X</td>
<td>$\pi_X(...)$</td>
<td>$L \leftarrow L_1,..,L_n$</td>
<td>SELECT X ...</td>
</tr>
<tr>
<td>P FILTER C</td>
<td>$\sigma_C(p)$</td>
<td>$L \leftarrow L_p, C$</td>
<td>FROM p WHERE C</td>
</tr>
<tr>
<td>P . Q</td>
<td>$p \bowtie q$</td>
<td>$L \leftarrow L_p,L_q$</td>
<td>p NAT JOIN q</td>
</tr>
<tr>
<td>P UNION Q</td>
<td>$p \uplus q$</td>
<td>$L \leftarrow L_p$</td>
<td>p UNION ALL q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L \leftarrow L_q$</td>
<td></td>
</tr>
<tr>
<td>P EXCEPT Q</td>
<td>$p \setminus q$</td>
<td>$L \leftarrow L_p,\neg L_q$</td>
<td>p EXCEPT q</td>
</tr>
</tbody>
</table>
Semantic extensions of the SPARQL core

I. Bags

Bag semantics is the default

II. Incomplete information

Blanks and generation of unbounds (e.g. OPTIONAL)

III. Paths

Property Paths

IV. Subqueries

(sub)

SELECT and its consequences

V. Delegation features

FROM NAMED, GRAPH, SERVICE
I. Bags

Bag semantics is the default
Semantic extensions of the SPARQL core

I. Bags

Bag semantics is the default

II. Incomplete information

Blanks and generation of unbounds (e.g. OPTIONAL)
<table>
<thead>
<tr>
<th></th>
<th>Semantic extensions of the SPARQL core</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Bags</td>
</tr>
<tr>
<td></td>
<td>Bag semantics is the default</td>
</tr>
<tr>
<td>II.</td>
<td>Incomplete information</td>
</tr>
<tr>
<td></td>
<td>Blanks and generation of unbounds (e.g. OPTIONAL)</td>
</tr>
<tr>
<td>III.</td>
<td>Paths</td>
</tr>
<tr>
<td></td>
<td>Property Paths</td>
</tr>
</tbody>
</table>
Semantic extensions of the SPARQL core

I. Bags
Bag semantics is the default

II. Incomplete information
Blanks and generation of unbounds (e.g. OPTIONAL)

III. Paths
Property Paths

IV. Subqueries
(sub) SELECT and its consequences
Semantic extensions of the SPARQL core

I. Bags
Bag semantics is the default

II. Incomplete information
Blanks and generation of unbounds (e.g. OPTIONAL)

III. Paths
Property Paths

IV. Subqueries
(sub) SELECT and its consequences

V. Delegation features
FROM NAMED, GRAPH, SERVICE
Logical reasoning
RDFS, OWL, etc.
OWA versus CWA
and its relation with RDF and SPARQL
Several protocols
Update, etc.
Who knows what else

God protects us...

– Semantics RDF and SPARQL
(And More) Semantic extensions of the SPARQL core

Logical reasoning
RDFS, OWL etc.
Logical reasoning
RDFS, OWL etc.

OWA versus CWA
and its relation with RDF and SPARQL
Logical reasoning
RDFS, OWL etc.

OWA versus CWA
and its relation with RDF and SPARQL

Several protocols
Update et al.
(And More) Semantic extensions of the SPARQL core

Logical reasoning
RDFS, OWL etc.

OWA versus CWA
and its relation with RDF and SPARQL

Several protocols
Update et al.

Who knows what else ...
God protects us ...
Two morals and a suggestion

Fact
SPARQL is an extremely complex language

Warning
It is not evident that the semantics of each extension behaves well when interacting with the other parts.
Two morals and a suggestion

Fact
SPARQL is an extremely complex language

Warning
It is not evident that the semantics of each extension behaves well when interacting with the other parts.

Suggestion
To study the themes of federation work with the core